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Abstract: The alkaloid (+)-R-decarbomethoxytetrahydrosecadine (+)-1 has been
synthesized by alkylation of (R)-3-cthylpiperidine with 3-(2-bromoethyl)-2-
ethylindole (7). The required enantiopure piperidine was prepared by alkylation of the
chiral non-racemic oxazolopiperidone (+)-rrans-8 followed by reduction of the lactam
carbonyl group and removal of the chiral auxiliary, whereas tryptophyl bromide 7 was
obtained by reaction of N-silyl-3-lithioindole 5 with ¢thylene oxide followed by
treatment with PBr3. The enantiomer of the natural product was prepared in a similar
way, starting from (-)-trans-8. Copyright © 1996 Elsevier Science Ltd

(+)-R-Decarbomethoxy-15,16,17,20-tetrahydrosccodine (+)-1 is the simplest secodine-type alkaloid
occurring in nature.! It was isolated for the first time in 1968 from Tabernaemontana cuminsii 23 although its
absolute configuration was not established until 19954 when the alkaloid was synthesized in enantiopure
form for the first time.5 A second enantiocontrolled synthesis ol (+)-1 has been recently reported.® In both
cases, the stereogenic center was created by lipase mediated kinetic transesterification of a racemic precursor,
either a 2-cyclopentenol? or a 3-hydroxy-1,2,3.6-tctrahydropyridine® derivative.

We present here enantioselective syntheses ol (+)-R-decarbomethoxytetrahydrosecodine (+)-1 and its
enantiomer (-)-1. Our approach involves the alkylation of each enantiomer of 3-cthylpiperidine with 3-(2-
bromoethyl)-2-ethylindole 7 and takes advantage of two methodologies recently developed in our
laboratory: a) the use of stable N-silyl-3-lithioindole derivatives for the regiosclective preparation of 3-
substituted indoles’, and b) the use of chiral non-racemic oxazolopiperidones for the stereoselective synthesis
of diversely substituted enantiopure piperidines.®

The required tryptophyl bromide 7 was prepared as outlined in Scheme 1. 2-Ethylindole was protected
as a rert-butyldimethylsily] derivative and then allowed to react with N-bromosuccinimide at -78°C to give
the 3-bromoindole derivative 4 in 90% overall yield.Y Trecatment of a THF solution of 4 with t-BuLi (2.0
equiv) at -780C, followed by reaction of the resulting 3-lithio species 510 with ethylene oxide, provided
tryptophol 6 in 75% yield. This reaction not only further demonstrates the usefulness of bulky silyl groups as
indole protecting groups in the generation and reactions of 3-lithioindoles but also constitutes an efficient
method for the synthesis of 2,3-disubstituted indoles. Finally, treatment of tryptophol 6 with PBr3 afforded
tryptophy! bromide 7 in 85% yicld.
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Scheme 1. Reagents and conditions: (i) NaH, t-BuMe2SiCl, THF, 250C; (ii) NBS, THF, -780C; (iii) -BuLi,
THF, -789C; (iv) ethylene oxide, THF, -78°C; (v) PBr3, CH2Cl2, 25°C.

On the other hand, (R)-3-ethylpiperidine was prepared from the enantiopure oxazolopiperidone (+)-
trans-8, which, in turn, was obtained by reaction of ethyl 5-oxopentanoate with (§)-phenylglycinol followed
by equilibration with TFA of the initially formed mixture (8:2 ratio) of (+)-cis-8 and (+)-trans-8 (Scheme 2).
In this manner, a 15:85 mixture of cis and rans isomers, which were casily separated by column
chromatography, was obtained. Generation of the enolate derived from (+)-trans-8 by treatment with lithium
hexamethyldisilazide, followed by alkylation with cthyl iodide, afforded (+)-9'1 with high stereoselectivity
(the 35,6R diastereomer was the only isomer observed by NMR) and excellent chemical yield (83%).12
LiAlH4 reduction of the lactam carbonyl group of (+)-9 took place with simultancous reductive cleavage of
the oxazolidine ring to give (+)-1013 in 95%, yicld. Finally, removal of the chiral auxiliary by hydrogenolysis
gave (R)-3-ethylpiperidine hydrochloride (+)-1114 (76% yield), which was then alkylated with tryptophyl
bromide 7 o give the target alkaloid (+)-1,15 o], +10.5 (¢ 0.45, CHCI3).16 in 64% yield.
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Scheme 2. Reagents and conditions: (i) oluene, reflux, Dean-Stark; (ii) TFA, CH2Clp, 259C; (iii) LIHMDS,
Etl, THF, -780C; (iv) LiAlH4, THF, 25°C; (v) HCl/CgHg. then Hp, PA-C, MeOH; (vi) 7, NaHCO3, CH3CN,
800C.

Following a reaction sequence identical to that depicted in Scheme 2, (-)-rrans-884 was converted to (S)-
3-cthylpiperidine hydrochloride (-)-11 by way of (-)-9 (Scheme 3) and then alkylated with tryptophyl bromide
7 10 give (-)-1, [a]™ -10.8 (¢ (0.45, CHCI3), the enantiomer of natural decarbomethoxy-tetrahydrosecodine. In
this enantiomeric series, the configuration of the stercogenic center at the piperidine 3-position was
determined as § by X-ray diffraction analysis of (-)-9,17 thus confirming the R configuration of the alkaloid
(+)-1.
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The above results illustrate the potential of the easily accessible bicyclic lactams (+)-trans-8 and (-)-

trans-8 for the enantioselective synthesis of 3-substituted piperidines. Using either (R)- or (S)-phenylgiycinol,

both of them commercially available, as source of chirality, (S)- or (R)-3-alkylpiperidines can be easily

obtained. It is worth mentioning that (R)- and (S)-3-ethylpiperidine had previously been obtained only by
resolution of the racemate. 8
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